Classification of Emphysema Subtypes: Comparative Assessment of Local Binary Patterns and Related Texture Features

نویسندگان

  • Mizuho Nishio
  • Hisanobu Koyama
  • Yoshiharu Ohno
  • Kazuro Sugimura
چکیده

The purpose of this study was to assess usefulness of local binary patterns (LBP) and related texture features, namely completed local binary patterns (CLBP) and local ternary patterns (LTP), for the classification of emphysema subtypes on low-dose CT images. Fifty patients (34 men and 16 women; age, 67.5 ± 10.1 years) who underwent low-dose CT (60 mAs) were included. They were comprised of 17 never smokers, 13 smokers without COPD, and 20 smokers with COPD. By consensus reading of low-dose CT images from these patients, two radiologists selected 3681 nonoverlapping regions of interest (ROIs) and annotated them as one of the following three classes: normal tissue, centrilobular emphysema, and paraseptal emphysema. From these ROIs, histogram of CT densities, LBP, CLBP, and LTP were calculated, and the 3 types of texture histograms were concatenated with the CT density histogram. These 3 types of histograms (referred to as combined LBP, combined CLBP, and combined LTP) were used to classify ROI using linear support vector machine. For each type of the combined histogram, the accuracy of classification was determined by patient-based 10-fold cross validation. The best accuracy of combined LBP, combined CLBP, and combined LTP were 81.36%, 82.99%, and 83.29%, respectively. Compared to the classification accuracies obtained with combined LBP, those with combined LTP or combined CLBP were consistently improved. In conclusion, the results of this study suggest that, on low-dose CT, LTP and CLBP were more useful for the classification of emphysema subtypes than LBP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP

In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Texture Classification in Lung CT Using Local Binary Patterns

In this paper we propose to use local binary patterns (LBP) as features in a classification framework for classifying different texture patterns in lung computed tomography. Image intensity is included by means of the joint LBP and intensity histogram, and classification is performed using the k nearest neighbor classifier with histogram similarity as distance measure. The proposed method is ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015